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Berry’s phase in a one-dimensional quantum many-body system
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We study an interacting one-dimensional quantum lattice gas of massive fermions on a ring with L lat-
tice sites. The ring is threaded by a magnetic flux corresponding to a twist in boundary conditions. We
compute the periodicity of the ground state under an adiabatically increasing flux and the associated
Berry’s phase occurring in this process. The model has a second-order phase transition line which coin-
cides with a line where the Berry phase changes nonanalytically.

PACS number(s): 05.30.Fk, 75.10.Jm, 05.70.Fh

We study the quantum Hamiltonian
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H=-— ___—2§cosh}» 2 e u21+e uzj_l
+2u(03;—03; 1)) (1)
acting on a ring of L sites (L even) where
uj=0%07 41 +o%o) tAlofoj—1) . ()

Here o}‘ "% are the Pauli matrices acting on site j. We
consider twisted boundary conditions where
0} 41 tio} L, =eT®(oTtio)) 3)

and 0} ;=01

For A= =0 this is the Hamiltonian of the anisotropic
Heisenberg antiferromagnet which in the range
—1<A<1 is known to describe a lattice gas of massless
fermions with a four-fermion coupling of strength A. In
this particular case the model is exactly soluble and its ei-
genvalues and eigenvectors can be found by means of the
Bethe ansatz [1,2]. The energy gaps vanish proportional
to 1/L and H has the finite-size scaling spectrum of a
conformally invariant Gauss model (Coulomb gas) with
central charge ¢ =1. Assigning to the fermions a charge
e, the boundary twist ® corresponds to a magnetic flux of
strength #ic® /e threading the ring [3]. (We shall use
units i=¢=e =1.) Obviously, the eigenvalues of H satis-
fy E(®)=E(®+27); the ground-state wave function,
however, was shown to have a periodicity of 47 [4]. As-
sociated to an adiabatic variation of the flux from ®=0
to ® =4 is the occurrence of a Berry phase y [5-7] in
the ground state. Using the Bethe ansatz, Korepin and
Wu computed Berry’s phase and found y=w for
0< A <1, independent of the size L of the system [8].

With A or u nonzero, the model is not critical and in
general not exactly soluble. Only in the noninteracting
case A=0 the model remains soluble and we find a finite
energy gap M =V sinh’A+pu?/cosh) (see below). For
A540 one obtains, in the scaling limit M =m /L —0 with
m =const, a system of interacting massive fermions for
which very little is known. In this Brief Report we com-
pute the periodicity of the ground state and the behavior
of Berry’s phase if the system is driven away from the
second-order phase-transition point A=p=0 by intro-
ducing the mass terms A and u. For our purposes the
normalization £ is irrelevant and we set £=1.

First we discuss some of the symmetries of the model.
The Hamiltonian H commutes with
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L
=130 4)

j=1
and with the generalized two-step translation operator
=[D(®)P=(c* D12, (5)

where the single-step translation operator D is defined by

Do jD—l=a j—1 for any local operator o with j defined
as modL. The Hamiltonians H(A,u,®) and
H(A,—p,—®) =PH(A,u,®)P ! are related through the

parity transformatlon P acting on local operators as
Po;P" =0y, ;. On the other hand, the operator
D(<I>) transforms H(A,u,®) into H(—A,—p,P)
=D(®)H(A,un,®)D ~}(®). From these relations and the
hermiticity of H we conclude that its spectrum depends
only on the absolute values of A and u. Finally, for u=0,
the quantum system defined by (1) is invariant under time
reversal. The antiunitary operator KP where K trans-
forms an operator or state vector into its complex conju-
gate leaves H(A,0,®) invariant. This shows that for u=0
the Berry phase must be either y =0 or y =w. The ques-
tion that remains in this special case is which of the two
possible values y takes and whether it depends on the pa-
rameters a, A, and the length L of the chain.

The physical meaning of the parameters A, u, and A as
mass terms and interaction strength, respectively, is more
transparent after a Jordan-Wigner transformation: We
introduce a two-component spinor by defining as its com-
ponents the creation (annihilation) operators b,:r and c,I
(by and ¢;) as

2k—1
by =(—1s3 I o?

=1

R B
bl=(=1"| TI of |s5
I=1 (6)
2k —2
e =i(—=1)fsh_, Il o7,
=1
R
ci=—i(—1) II o |sax—1 -
=1
They satlsfy the anticommutation relations

{br,b]} ={cr,c} =8 k- All other anticommutators van-
ish. The number operator

L/2
N="3 (bfb,+cfey) )
k=1
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commutes with the Hamiltonian, which expressed in terms of the new operators reads

H 1 L/2 et
- 2 coshA kgl {le [bk(ck+l

+4AbJby (e

The boundary conditions now read

— i(wL 2— 7N +®)
CrLp+17C € ,

:e—i(wL/2~ﬂN+¢)cwl‘ ) ©)

t
CL/2+1

Following [6] (see also the discussion in [8]), Berry’s
phase y of a time-dependent eigenstate |(¢)) of H under
a periodic adiabatic change of ® at time t =0 to ®+ P,
at time T is given by

y=Re|i[ dt<¢(t) ¢(:>]

=Re |i [ d¢><¢(¢) ¢(<1>)> (10)
where we assume the state vector to be normalized to 1,

(Y(@)|Y(®@))=1, (11)
and periodic with period ®, i.e.,

(@) =D+ D)) . (12)

In what follows we compute ®, and y for the ground
state of H.

First we study the noninteracting system with A=0.
In this case H is quadratic in the fields and the model can
be solved by standard techniques. We consider a sector
of fixed quantum number N (7) and perform a discrete
Fourier transformation by introducing the operators

2 —ip_k
Bn= |7 > "by
" L k=1
172
2 L/2 ipnk +
BI: Z ze bky
k=
) mLz/z o (13)
va= |7 e e,
n L =
172
2 L2 4 s
YnT T e "
n L =
with

_ 4mn+20+(L —2N)rr

D 2L (14)
From this we obtain
H=— 1 %2 {icos(p +i)»)e_ip"yTB
coshA e
—icos(p, —ik)eip"BI,yn
+uy Ly BB} - 1s)

—c ) +blef oy —eh)1+2i sinhA(bc, —cfby) +2ulcfe, —blby)

c;ck+e'\c;+lck+,)}+2Aﬁ . (8)

—

This Hamiltonian is diagonalized by a transformation of
the fields B, and y,. Defining the operators 4, and A,

as
Bn + rn n
== ——__:—L.“— , (16)
Viitlr,
— B, tF¥n
A,=n e an
V1+[7, 2
and the constants 7, and 7, by
—le Pn
=———(u+te,), 18
n cos(p,,-l—i?»)(‘u € 18
—ie P
o= —————(u—¢,) , 19
= costp, 1 ih) KT 19)
one obtains
L2 ; -
H=— Y €,(4,4,— 4, 4,), (20
n=1
with the excitation energies
_ V/cos’p, +sinh*A+p? o1
€™ coshA
The fields satisfy
A=A,y A=Apirn 22)
and tﬁe anticommutation  relations {4,, 4 S
={4,, y v} =8, m- All other anticommutators vanish.

The number operator (7) expressed in terms of the

transformed fields reads ﬁ—zn = A,, A,+ A,, A4,).
Note that one has

A (®+2m)= A4, (P),
— — (23)
A (O+2m)=A4, (P) .

The elgenstates of H with eigenvalue

E=E(®)= 2]~1e +21_1e ) are of the form

— g4t t
»m1>"Ari1

[ny, .. ng,my, ... A,ka,L,---Z,;,[io),

(24)

where the pseudovacuum state |0) is the (single) eigen-
state of H with quantum number N =0. In the spin rep-
resentation this is the state with all spins up. The eigen-
values (24) with eigenvalue N=k +! of the number
operator N and their Hermitian conjugates form an
orthonormal basis.

The ground state of the system with periodic boundary
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conditions, i.e., ®=0, with energy E,(®=0)
=—3L72,(0) is the state
L2
lv(0))= [T 4.(0)]0) . (25)

n=1

From (22, (23), and the anticommutation relations we
find

L/2+1
lv(2m)= I 450)]0)

n=2
=(—1)%"2|v(0)) . (26)

Furthermore, by inspecting the excitation spectrum as
given by (20) and (21) we find that for A~0 or u+0 there
is no level crossing of the ground state as P is varied.

Now we are in a position to compute the Berry phase
of the ground state. From (26) we conclude that the
periodicity of the ground state is ®,=27. In order to
eliminate the L-dependent phase we redefine the ground
state as |D(®))=e'®L/4|u(®)). This state satisfies the
conditions (11) and (12) and we can use Eq. (10) in order
to compute the Berry phase y.

From (25) and (26) we obtain

=—;I+n§1<o 4, | 3g 41 0)
=—-z%+§f 21rnL+(l> 27)
and therefore
Y=Re tf d<D< a?b ﬁ)
=TL+Re|i ¥ z::f do f 2”n+¢ ]
=ZL+Re [iL Jax f(x)] (28)

with x=® /L and f(x)=(0| 4,(3/dx)A}|0) /L. Here
we have used the periodicity f(x)=f(x +), which is a
consequence of the periodicity relations (22).

It remains to compute f(x). After some algebra we

find
flx)= L+2— [1+-# 1+ coshA sinhA
e(x) ez(x)—‘u2 ’
(29)

with €(x)=V'cos’x +sinh?A+u?. Thus we obtain
Berry’s phase
7/=7r—%fﬂdx 14 ‘1+ co:h}»smhzk

° €x) ex)—p (30)

which can be expressed in terms of elliptic integrals [9] as

2463
y=mO(A)+Vk |uF %,k — p tanhAII ,nk J
(31)
with
k~'=cosh’A+pu?, (32)
n"l=p?. (33)

The step function O(x) is defined as O(x)=0 for x <0,
©6(0)=1, and ©(x)=1 for x >0. Note that this result is
not valid for A=y=0 in which case one finds y=m.
Thus for =0 we obtain

_m A0
Y=o, A<0. (34)

Note that for A=0 and p small but nonzero (31) yields

y=Zpml o (35)
2 4

Now we consider the interacting case 0 <A <1. We re-
strict our discussion to the time-reversal-invariant case
1=0. As quoted above, for A=0 one finds y=m [8]. In
the limit A—* o the Hamiltonian decouples into a sum
of commuting pieces u,; (or u,;_,, respectively) and it is
easy to see that the periodicity of the ground state is
®y=2m and y == for a— + o while y =0 for a— — «.
Both results are independent of the interaction strength A
and the length L of the chain and for reasons of continui-
ty we conclude that y =0 for A<Aj and y = for A=A,
for some A;<0. In order to determine the critical value
Ao we express the ground state |v,(®)) of H(A,0,®) in
terms of the eigenstates of H(0,0,®) and study the sym-
metries of the coefficients in this expansion. The eigen-
states |W,(®)) of H(0,0,®) are also eigenstates of the
one-step translation operator D(®) (5) with eigenvalue
explik,) where k,=2mn /L. Choosing A0 mixes only
states which differ in their total momentum by 0 or =
from the momentum O of the ground state |vy(®)) of
H(0,0,®), and we can write

[0(D)) =3 [f2n (2, D)|¥,, (@)

+fon-1(A,®)|¥,, ()], (36)

where states with an even index have momentum k=0
and states with an odd index have momentum k =7. We
also know that |v_,(®))=D(®)|v,(®)) and therefore

[v_a (@)= [f2. (A, ®)|W,, (D))

~fan 1A @)Y, _(®))]. (37

Inserting these expressions into (10) one finds that if y
does not depend on A for A >0 (as we assume because of
continuity) then it must be independent of A also for A <0
unless there are some strange cancellations. Thus we find
Ao=0 and the Berry phase y =y(A,A) for the interacting
system 0<A <1 is given by the same expression (34) as
for the noninteracting model with A=0.
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To summarize, we have studied the Hamiltonian (1) of
an interacting one-dimensional fermionic system on a
ring. We computed the Berry phase ¥ of its ground state
associated to an adiabatic change of a magnetic flux
threading the ring as a function of the mass terms A and
p. For ;=0 the system is invariant under time reversal.
In this case y switches from 7 to 0 as A becomes negative
(34). We have argued that this discontinuity at A=0 does
not depend on the interaction strength A (in the range
0<A<1) and on the size L of the system. It is an in-
teresting coincidence that at A=0 the system has a
second-order phase transition to a conformally invariant
massless phase. The spectra for positive and negative
values are identical, but not the Berry phase. One may
speculate that such a relation between critical and non-
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critical regimes holds also for other systems. It would be
interesting to study this observation, which from a physi-
cal point of view is purely accidental, more systematically
in other integrable models.

For u7#0 one breaks time-reversal symmetry and the
system has a Berry phase continuously depending on .
For the noninteracting system y is given by (31). It does
not depend on L. It is remarkable that for A=0 and p
small one finds ¥ =7 /2 instead of ¥ = for u=0. This a
consequence of a level splitting between states which are
degenerate for u=0.
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